Publications

bioRxiv Recent 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010- earlier

Recent Work

  • The endosomal sorting complexes required for transport (ESCRTs) I, -II and -III, and their associated factors are a collection of ∼20 proteins in yeast and ∼30 in mammals, responsible for severing membrane necks in processes that range from multivesicular body formation, HIV release and cytokinesis, to plasma and lysosomal membrane […]
  • Nef is an HIV-encoded accessory protein that enhances pathogenicity by down-regulating major histocompatibility class I (MHC-I) expression to evade killing by cytotoxic T lymphocytes (CTLs). A potent Nef inhibitor that restores MHC-I is needed to promote immune-mediated clearance of HIV-infected cells. We discovered that the plecomacrolide family of natural products […]
  • The Rag GTPases (Rags) recruit mTORC1 to the lysosomal membrane in response to nutrients, where it is then activated in response to energy and growth factor availability. The lysosomal folliculin (FLCN) complex (LFC) consists of the inactive Rag dimer, the pentameric scaffold Ragulator, and the FLCN:FNIP2 (FLCN-interacting protein 2) GTPase […]
  • The molecular basis for the severity and rapid spread of the COVID-19 disease caused by SARS-CoV-2 is largely unknown. ORF8 is a rapidly evolving accessory protein that has been proposed to interfere with immune responses. The crystal structure of SARS-CoV-2 ORF8 was determined at 2.04 Å resolution by x-ray crystallography. […]
  • Mutation of C9orf72 is the most prevalent defect associated with amyotrophic lateral sclerosis and frontotemporal degeneration¹. Together with hexanucleotide-repeat expansion^(2,3), haploinsufficiency of C9orf72 contributes to neuronal dysfunction^(4-6). Here we determine the structure of the C9orf72-SMCR8-WDR41 complex by cryo-electron microscopy. C9orf72 and SMCR8 both contain longin and DENN (differentially expressed in […]

2020

Shi, X., Yokom, A. L., Wang, C., Young, L. N., Youle, R. J., & Hurley, J. H. (2020). ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimerThe Journal of cell biology219(7), e201911047. https://doi.org/10.1083/jcb.201911047

Fracchiolla, D., Chang, C., Hurley, J. H., & Martens, S. (2020). A PI3K-WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagyThe Journal of cell biology219(7), e201912098. https://doi.org/10.1083/jcb.201912098

Flower, T. G., Takahashi, Y., Hudait, A., Rose, K., Tjahjono, N., Pak, A. J., Yokom, A. L., Liang, X., Wang, H. G., Bouamr, F., Voth, G. A., & Hurley, J. H. (2020). A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scissionNature structural & molecular biology27(6), 570–580. https://doi.org/10.1038/s41594-020-0426-4

Prinz, W. A., & Hurley, J. H. (2020). A firehose for phospholipidsThe Journal of cell biology219(5), e202003132. https://doi.org/10.1083/jcb.202003132

2019

Lawrence, R. E., Fromm, S. A., Fu, Y., Yokom, A. L., Kim, D. J., Thelen, A. M., Young, L. N., Lim, C. Y., Samelson, A. J., Hurley, J. H., & Zoncu, R. (2019). Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complexScience (New York, N.Y.)366(6468), 971–977. https://doi.org/10.1126/science.aax0364

Young, L. N., Goerdeler, F., & Hurley, J. H. (2019). Structural pathway for allosteric activation of the autophagic PI 3-kinase complex IProceedings of the National Academy of Sciences of the United States of America116(43), 21508–21513. https://doi.org/10.1073/pnas.1911612116

Buffalo, C. Z., Iwamoto, Y., Hurley, J. H., & Ren, X. (2019). How HIV Nef Proteins Hijack Membrane Traffic To Promote InfectionJournal of virology93(24), e01322-19. https://doi.org/10.1128/JVI.01322-19

Horst, B. G., Yokom, A. L., Rosenberg, D. J., Morris, K. L., Hammel, M., Hurley, J. H., & Marletta, M. A. (2019). Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopyeLife8, e50634. https://doi.org/10.7554/eLife.50634

Buffalo, C. Z., Stürzel, C. M., Heusinger, E., Kmiec, D., Kirchhoff, F., Hurley, J. H., & Ren, X. (2019). Structural Basis for Tetherin Antagonism as a Barrier to Zoonotic Lentiviral TransmissionCell host & microbe26(3), 359–368.e8. https://doi.org/10.1016/j.chom.2019.08.002

Turco, E., Witt, M., Abert, C., Bock-Bierbaum, T., Su, M. Y., Trapannone, R., Sztacho, M., Danieli, A., Shi, X., Zaffagnini, G., Gamper, A., Schuschnig, M., Fracchiolla, D., Bernklau, D., Romanov, J., Hartl, M., Hurley, J. H., Daumke, O., & Martens, S. (2019). How RB1CC1/FIP200 claws its way to autophagic engulfment of SQSTM1/p62-ubiquitin condensatesAutophagy15(8), 1475–1477. https://doi.org/10.1080/15548627.2019.1615306

Chang, C., Young, L. N., & Hurley, J. H. (2019). The BARA necessities of PtdIns 3-kinase activation in autophagyAutophagy15(6), 1122–1123. https://doi.org/10.1080/15548627.2019.1596501

Turco, E., Witt, M., Abert, C., Bock-Bierbaum, T., Su, M. Y., Trapannone, R., Sztacho, M., Danieli, A., Shi, X., Zaffagnini, G., Gamper, A., Schuschnig, M., Fracchiolla, D., Bernklau, D., Romanov, J., Hartl, M., Hurley, J. H., Daumke, O., & Martens, S. (2019). FIP200 Claw Domain Binding to p62 Promotes Autophagosome Formation at Ubiquitin CondensatesMolecular cell74(2), 330–346.e11. https://doi.org/10.1016/j.molcel.2019.01.035

Brier, L. W., Ge, L., Stjepanovic, G., Thelen, A. M., Hurley, J. H., & Schekman, R. (2019). Regulation of LC3 lipidation by the autophagy-specific class III phosphatidylinositol-3 kinase complexMolecular biology of the cell30(9), 1098–1107. https://doi.org/10.1091/mbc.E18-11-0743

Hurley, J. H., & Johannes, L. (2019). Retro Styles for Vesicle CoatsBiochemistry58(6), 433–434. https://doi.org/10.1021/acs.biochem.8b01271

Chang, C., Young, L. N., Morris, K. L., von Bülow, S., Schöneberg, J., Yamamoto-Imoto, H., Oe, Y., Yamamoto, K., Nakamura, S., Stjepanovic, G., Hummer, G., Yoshimori, T., & Hurley, J. H. (2019). Bidirectional Control of Autophagy by BECN1 BARA Domain DynamicsMolecular cell73(2), 339–353.e6. https://doi.org/10.1016/j.molcel.2018.10.035

2018

Schöneberg, J., Pavlin, M. R., Yan, S., Righini, M., Lee, I. H., Carlson, L. A., Bahrami, A. H., Goldman, D. H., Ren, X., Hummer, G., Bustamante, C., & Hurley, J. H. (2018). ATP-dependent force generation and membrane scission by ESCRT-III and Vps4Science (New York, N.Y.)362(6421), 1423–1428. https://doi.org/10.1126/science.aat1839

Schulze-Gahmen, U., & Hurley, J. H. (2018). Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complexProceedings of the National Academy of Sciences of the United States of America115(51), 12973–12978. https://doi.org/10.1073/pnas.1806438115

Hurley, J. H., & Cada, A. K. (2018). Inside job: how the ESCRTs release HIV-1 from infected cellsBiochemical Society transactions46(5), 1029–1036. https://doi.org/10.1042/BST20180019

Lawrence, R. E., Cho, K. F., Rappold, R., Thrun, A., Tofaute, M., Kim, D. J., Moldavski, O., Hurley, J. H., & Zoncu, R. (2018). A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffoldNature cell biology20(9), 1052–1063. https://doi.org/10.1038/s41556-018-0148-6

Morris, K. L., Buffalo, C. Z., Stürzel, C. M., Heusinger, E., Kirchhoff, F., Ren, X., & Hurley, J. H. (2018). HIV-1 Nefs Are Cargo-Sensitive AP-1 Trimerization Switches in Tetherin DownregulationCell174(3), 659–671.e14. https://doi.org/10.1016/j.cell.2018.07.004

Lin, M. G., Schöneberg, J., Davies, C. W., Ren, X., & Hurley, J. H. (2018). The dynamic Atg13-free conformation of the Atg1 EAT domain is required for phagophore expansionMolecular biology of the cell29(10), 1228–1237. https://doi.org/10.1091/mbc.E17-04-0258

Gardner, B. M., Castanzo, D. T., Chowdhury, S., Stjepanovic, G., Stefely, M. S., Hurley, J. H., Lander, G. C., & Martin, A. (2018). The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threadingNature communications9(1), 135. https://doi.org/10.1038/s41467-017-02474-4

2017

Stjepanovic, G., Baskaran, S., Lin, M. G., & Hurley, J. H. (2017). Unveiling the role of VPS34 kinase domain dynamics in regulation of the autophagic PI3K complexMolecular & cellular oncology4(6), e1367873. https://doi.org/10.1080/23723556.2017.1367873

Su, M. Y., Morris, K. L., Kim, D. J., Fu, Y., Lawrence, R., Stjepanovic, G., Zoncu, R., & Hurley, J. H. (2017). Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation ComplexMolecular cell68(5), 835–846.e3. https://doi.org/10.1016/j.molcel.2017.10.016

Bahrami, A. H., Lin, M. G., Ren, X., Hurley, J. H., & Hummer, G. (2017). Scaffolding the cup-shaped double membrane in autophagyPLoS computational biology13(10), e1005817. https://doi.org/10.1371/journal.pcbi.1005817

Stjepanovic, G., Baskaran, S., Lin, M. G., & Hurley, J. H. (2017). Vps34 Kinase Domain Dynamics Regulate the Autophagic PI 3-Kinase ComplexMolecular cell67(3), 528–534.e3. https://doi.org/10.1016/j.molcel.2017.07.003

Mandadapu, K. K., & Hurley, J. H. (2017). Friction at the BAR Leads to Membrane BreakupCell170(1), 14–16. https://doi.org/10.1016/j.cell.2017.06.027

Hurley, J. H., & Young, L. N. (2017). Mechanisms of Autophagy InitiationAnnual review of biochemistry86, 225–244. https://doi.org/10.1146/annurev-biochem-061516-044820

Qi, S., Li, Z., Schulze-Gahmen, U., Stjepanovic, G., Zhou, Q., & Hurley, J. H. (2017). Structural basis for ELL2 and AFF4 activation of HIV-1 proviral transcriptionNature communications8, 14076. https://doi.org/10.1038/ncomms14076

Tooze, S. A., & Hurley, J. H. (2017). Molecular Mechanisms of Autophagy-Part B. Journal of molecular biology429(4), 455–456. https://doi.org/10.1016/j.jmb.2017.01.009

Schöneberg, J., Lee, I. H., Iwasa, J. H., & Hurley, J. H. (2017). Reverse-topology membrane scission by the ESCRT proteinsNature reviews. Molecular cell biology18(1), 5–17. https://doi.org/10.1038/nrm.2016.121